

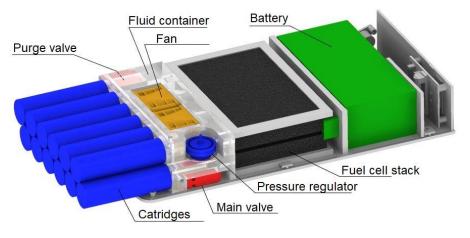
Fanny Mancilla, Luis Nava, Emilio Pizano

- 1. Objectives
- 2. Important concepts
- 3. Original state of the scooter
- 4. Development
 - a. Intersection circuit
 - b. Motherboard
 - c. Electronics and controllers case
 - d. Steering mechanism
- 5. What is left to be done
- 6. Conclusion

1. Objectives

- 2. Important concepts
- 3. Original state of the scooter
- 4. Development
 - a. Intersection circuit
 - b. Motherboard
 - c. Electronics and controllers case
 - d. Steering mechanism
- 5. What is left to be done
- 6. Conclusion

- Development of a hybrid powered Hydrogen scooter by means of a hydrogen cell.
- Design of a motherboard for the intersection circuit.
- Design of the external case for the user information panel and electronics.
- Design of an autonomous driving mechanism.

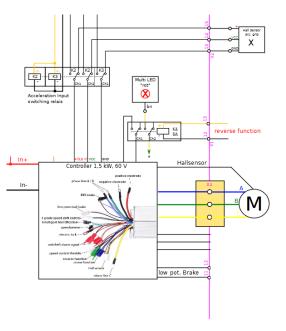

- 1. Objectives
- 2. Important concepts
- 3. Original state of the scooter
- 4. Development
 - a. Intersection circuit
 - b. Motherboard
 - c. Electronics and controllers case
 - d. Steering mechanism
- 5. What is left to be done
- 6. Conclusion

2. Important concepts

- E-Mobility
- Need of Transportation
- Concerning amount of waste
- Innovation Hydrogen Fuel Cells
- Efficiency of 50 % against 30-35%

[Fig. 1] Hydrogen cell

- 1. Objectives
- 2. Important concepts
- 3. Original state of the scooter
- 4. Development
 - a. Intersection circuit
 - b. Motherboard
 - c. Electronics and controllers case
 - d. Steering mechanism
- 5. What is left to be done
- 6. Conclusion



3. Original state of the scooter

[Fig. 2] Original frame and electronics location

[Fig. 3] Original controller circuit

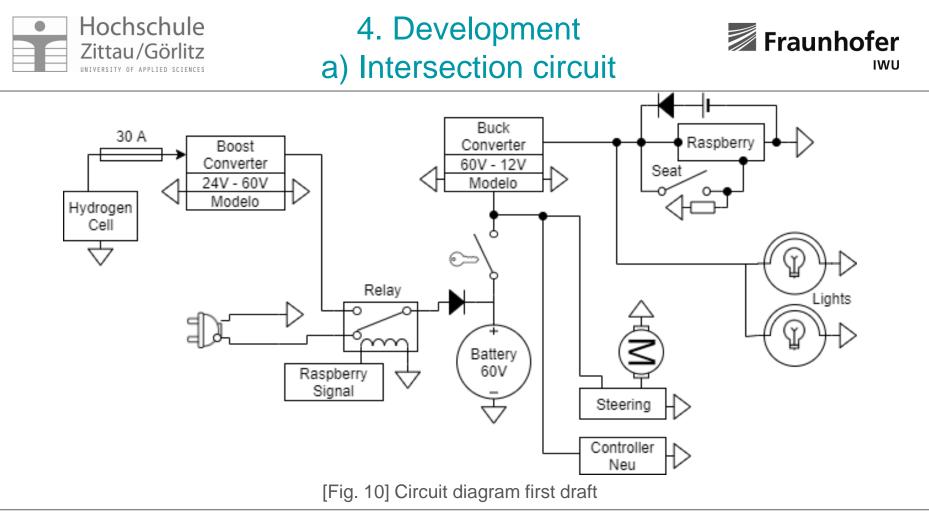
- 1. Objectives
- 2. Important concepts
- 3. Original state of the scooter
- 4. Development
 - a. Intersection circuit
 - b. Motherboard
 - c. Electronics and controllers case
 - d. Steering mechanism
- 5. What is left to be done
- 6. Conclusion

4. Developmenta) Intersection circuit

- 1. Components research
- 2. Pre-selection and approval
- 3. Design of the circuit

[Fig. 4] Switch

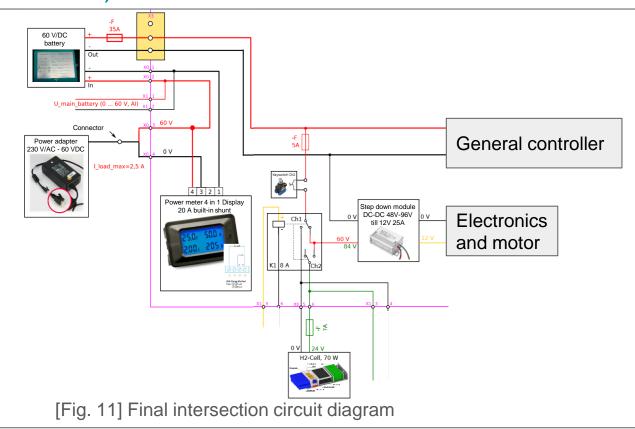
Transford Brites Brites



[Fig. 9] Display

[Fig. 6] Relay

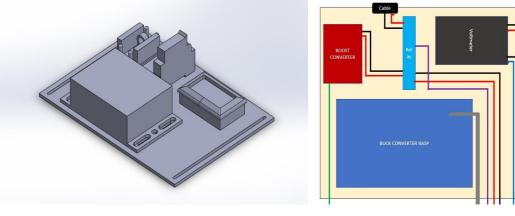
[Fig. 7] 400W DC-DC Boost Converter [Fig. 8] DC-DC Step-Down Converter 48V-96V to 12V



E-Scooter - Electronics team

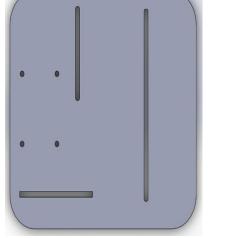
4. Developmentb) Intersection circuit

- 1. Objectives
- 2. Important concepts
- 3. Original state of the scooter


4. Development

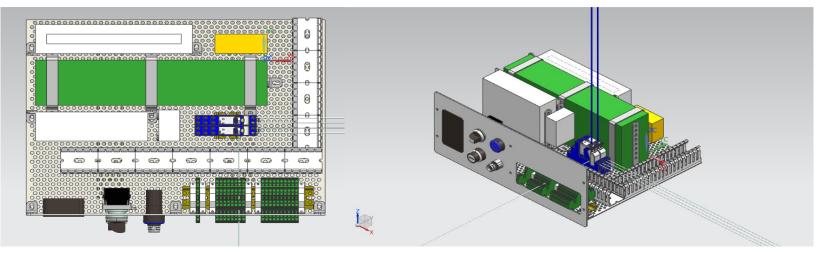
- a. Intersection circuit
- b. Motherboard
- c. Electronics and controllers case
- d. Steering mechanism
- 5. What is left to be done
- 6. Conclusion

First rough design of the motherboard


[Fig. 12] 3D model in Solidworks

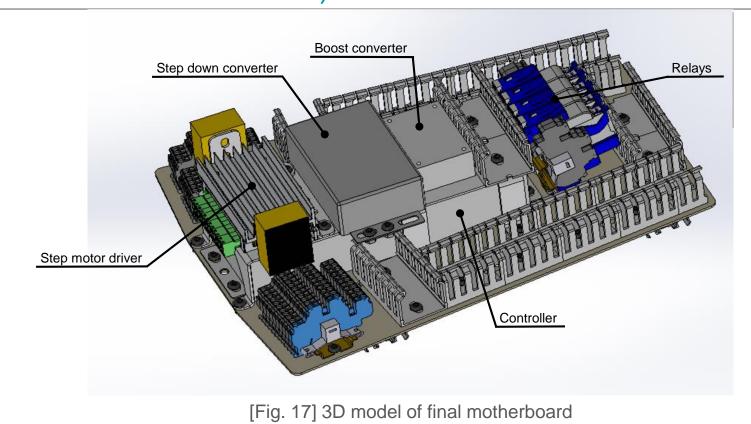
[Fig. 13] 2D diagram

Second rough design of the motherboard

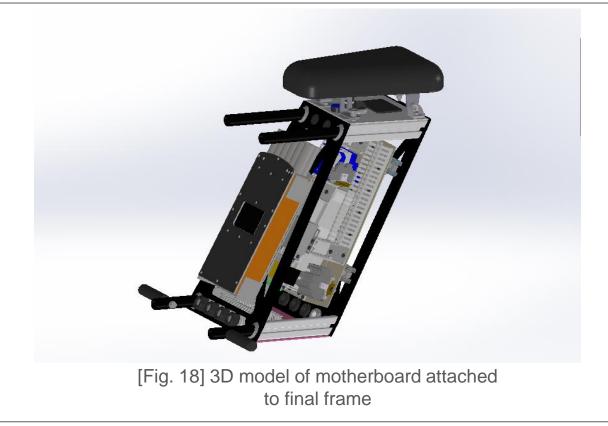

BOST CONVENTER Jatury OL

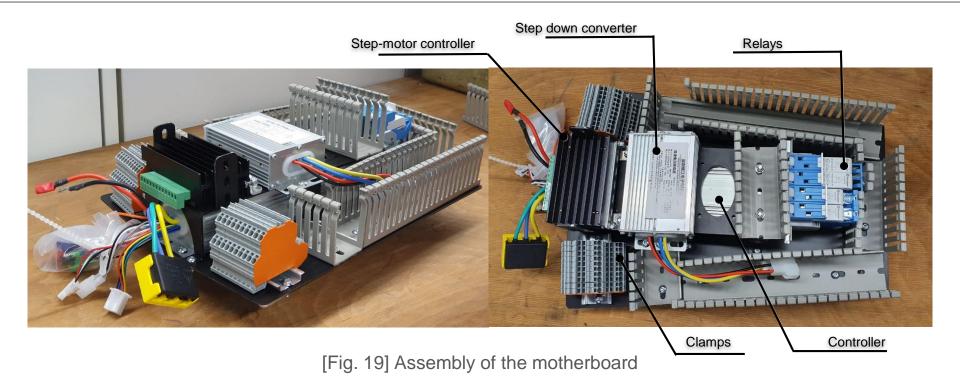
[Fig. 14] 3D model in Solidworks

[Fig. 15] 2D diagram



[Fig. 16] Third design of the motherboard





- 1. Objectives
- 2. Important concepts
- 3. Original state of the scooter

4. Development

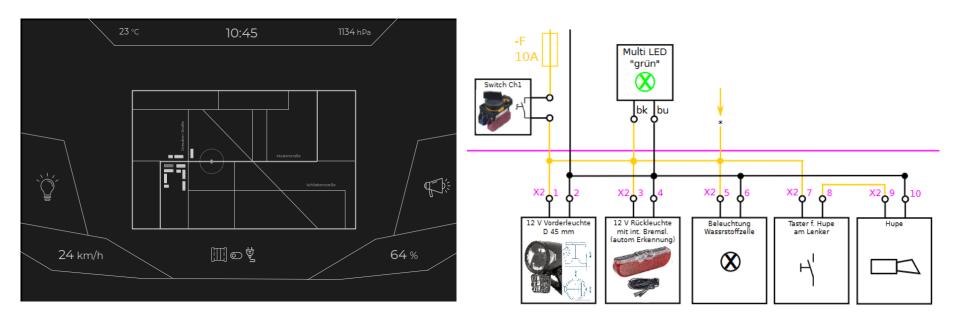
- a. Intersection circuit
- b. Motherboard

c. Electronics and controllers case

- d. Steering mechanism
- 5. What is left to be done

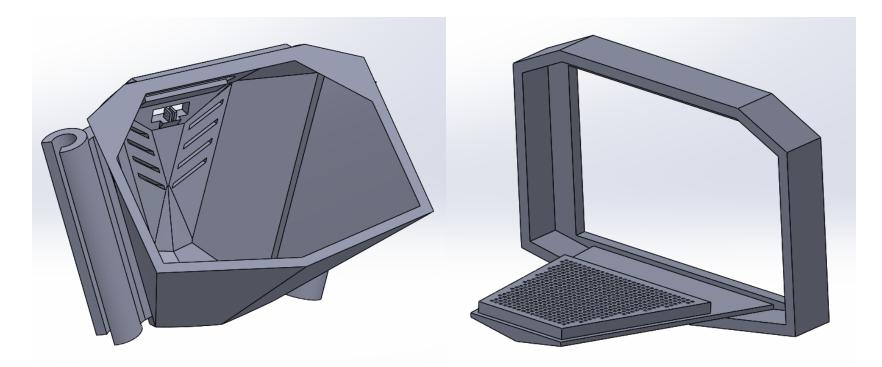
6. Conclusion

4. Development


c) Electronics and controllers case

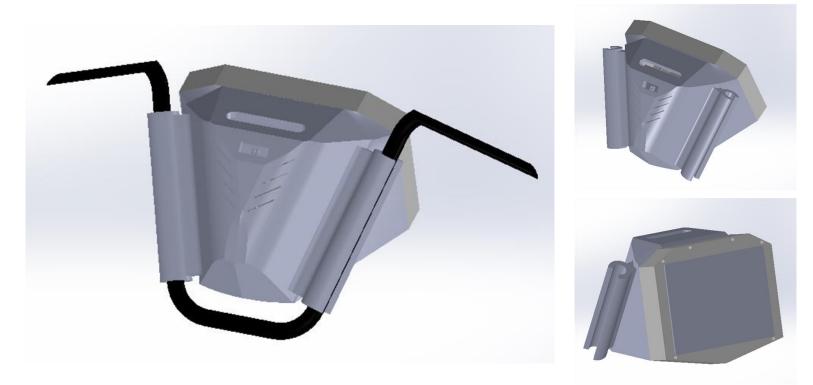
- Raspberry
- Raspberry display
- Sensors
 - Light sensor
 - Humidity and temperature sensor
 - Atmospheric pressure sensor
- Antenna
- Buck converter and level shifters (x2)
- Arduino board
- Additional circuit board
- Analog-Digital Converter
- Speakers
- Camera

4. Developmentc) Electronics collaboration



[Fig. 20] Electronics team GUI

[Fig. 21]Electronics team diagram



[Fig. 22] 3D model of front case

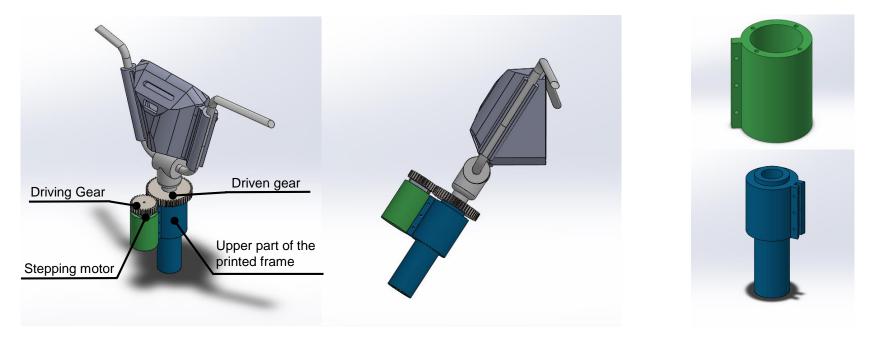
[Fig. 23] 3D model of back case

[Figures 24, 25 & 26] 3D Assembly of the electronics case

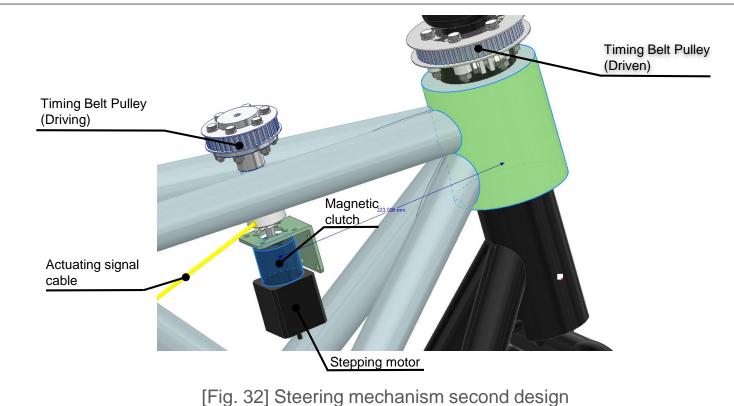
- 1. Objectives
- 2. Important concepts
- 3. Original state of the scooter

4. Development

- a. Intersection circuit
- b. Motherboard
- c. Electronics and controllers case
- d. Steering mechanism
- 5. What is left to be done
- 6. Conclusion

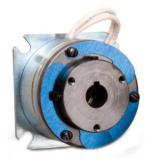


[Figures 27 & 28] Steering gears concept for the first design

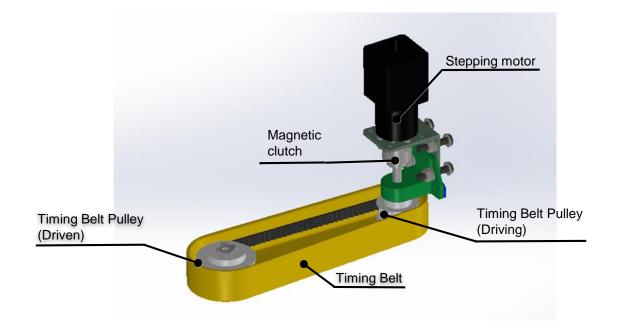


[Figures 29 & 30] 3D Model of steering mechanism first design

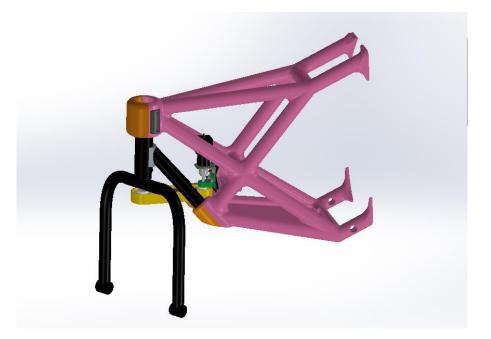
[Fig. 31] Attachments


[Fig. 33] Step-motor

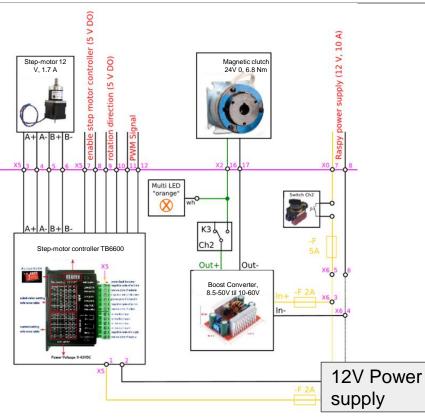
[Fig. 35] Timing Belt


[Fig. 34] Timing Belt Pulley

[Fig. 36] Magnetic clutch



[Fig. 37] Steering mechanism final design



[Fig. 38] Location of steering mechanism

[Fig. 39] Steering mechanism connection diagram

- 1. Objectives
- 2. Important concepts
- 3. Original state of the scooter
- 4. Development
 - a. Intersection circuit
 - b. Motherboard
 - c. Electronics and controllers case
 - d. Steering mechanism
- 5. What is left to be done
- 6. Conclusion

5. What is left to be done

- Implementation of electronic components and connection
- Manufacture of steering mechanism
- Testing the Hydrogen cell
- Printing of Raspberry case

- 1. Objectives
- 2. Important concepts
- 3. Original state of the scooter
- 4. Development
 - a. Intersection circuit
 - b. Motherboard
 - c. Electronics and controllers case
 - d. Steering mechanism
- 5. What is left to be done
- 6. Conclusion

After finishing the assigned tasks, we can say that there has been a huge advance in the development of this project.

[1]	Hydrogen cell system	6
[2]	Original frame and electronics location	8
[3]	Original controller circuit	8
[4]	Switch	10
[5]	Key switch	10
[6]	Relay	10
[7]	Boost converter	10
[8]	Step down converter	10
[9]	Display	10
[10]	Circuit diagram first draft	11

[11]	Final intersection circuit diagram	12
[12]	3D model in Solidworks (motherboard 1)	14
[13]	2D diagram (motherboard 1)	14
[14]	3D model in Solidworks (motherboard 2)	15
[15]	2D diagram (motherboard 2)	15
[16]	Third design of the motherboard	16
[17]	3D model of final motherboard	17
[18]	3D model of motherboard attached to final frame	18
[19]	Assembly of motherboard	19
[20]	Electronics team GUI	22

[21]	Electronics team diagram	22
[22]	3D model of front case	23
[23]	3D model of back case	23
[24]	3D Assembly of the electronics case	24
[25]	3D Assembly of the electronics case	24
[26]	3D Assembly of the electronics case	24
[27]	Steering gears concept for the first design	26
[28]	Steering gears concept for the first design	26
[29]	3D model of steering mechanism first design	27
[30]	3D model of steering mechanism first design	27

[31]	Attachments	27
[32]	3D model of steering mechanism second design	28
[33]	Step-motor pulley	29
[34]	Timing belt	29
[35]	Timing belt	29
[36]	Magnetic clutch	29
[37]	Steering mechanism final design	30
[38]	Location of steering mechanism	31
[39]	Steering mechanism connection diagram	32

[1]	https://www.ise.fraunhofer.de/en/research-projects/litefcbike.html	6
[4]	https://www.apem.com/de/cw-selector-switches-series-416.html	10
[5]	https://de.rs-online.com/web/p/industrie-schlusselschalter-wahlschalter-komplettgerate/1682695/	10
[6]	https://www.schaecke.at/aus/Kategorien/Steuern-%26-Regeln/Sch%C3%BCtze-%26-Relais/Schaltrelais/Koppelrelais- f%C3%BCr-DIN-Schiene-Schraubklemmen-2W-8-A-24V-DC-Serie-4C/p/2835258	10
[7]	https://www.amazon.de/Converter-Aufw%C3%A4rtswandler-Konstante-Stromversorgungsmodul-Treiber/dp/B07HB4NVBL	10
[8]	https://www.amazon.de/Dropping-Spannungswandler-48V-96V-Konverter-Stromversorgungsmodul/dp/B07PMHWB7C	10
[9]	https://www.amazon.de/KKmoon-Voltmeter-Amperemeter-Stromz%C3%A4hler-Leistungsmesser/dp/B07QCMZQ2H	10
[33]	https://www.robotshop.com/en/12v-17a-667oz-in-nema-17-bipolar-stepper-motor.html	29
[34]	https://www.joom.com/de/products/1521190682254613738-150-1-709-2672951747	29
[35]	https://at.rs-online.com/web/p/zahnriemen/7785064/	29
[36]	https://at.rs-online.com/web/p/kupplungen-magnetisch/1268838/	29

